Consider the function f(x)=12x+√2. Find the value of √2[f(−5)+f(−4)+f(−3)+f(−2)+f(−1)+f(0)+f(1)+f(2)+f(3)+f(4)+f(5)+f(6)].
Answer:
6
- Given, f(x)=12x+√2
Here, f(−5) can be written asf(1−6).
Similarly, f(−4)=f(1−5),f(−3)=f(1−4), …f(0)=f(1−1) - We have
f(x)=12x+√2⟹f(1−x)=121−x+√2⟹f(x)+f(1−x)=12x+√2+121−x+√2⟹f(x)+f(1−x)=√2√2(2x+√2)+2x2x(21−x+√2)⟹f(x)+f(1−x)=√22x√2+2+2x2+2x√2⟹f(x)+f(1−x)=√2+2x2+2x√2⟹f(x)+f(1−x)=√2+2x√2(√2+2x)⟹f(x)+f(1−x)=1√2 - Now,
√2[f(−5)+f(−4)+f(−3)+f(−2)+f(−1)+f(0)+f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]⟹√2[{f(6)+f(1−6)}+{f(5)+f(1−5)}+…+{f(2)+f(1−2)}+{f(1)+f(1−1)}]⟹√2[6√2]⟹6 - Hence, the value of the given expression is 6.